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Abstract

Based on the notion Minimizing Lipschitz Extensions and
its connection with the infinity Laplacian, a computational
framework for surface warping and in particular brain
warping (the nonlinear registration of brain imaging data)
is presented in this paper. The basic concept is to com-
pute a map between surfaces that minimizes a distortion
measure based on geodesic distances while respecting the
boundary conditions provided. In particular, the global
Lipschitz constant of the map is minimized. This frame-
work allows generic boundary conditions to be applied
and allows direct surface-to-surface warping. It avoids the
need for intermediate maps that flatten the surface onto
the plane or sphere, as is commonly done in the litera-
ture on surface-based non-rigid brain image registration.
The presentation of the framework is complemented with
examples on synthetic geometric phantoms and cortical
surfaces extracted from human brain MRI scans.

1 Introduction

Brain warping, a form of brain image registration and
geometric pattern matching, is one of the most funda-
mental and thereby most studied problems in computa-
tional brain imaging [37]. Brain images are commonly
warped, using 3-dimensional deformation fields, onto a
common neuroanatomic template prior to cross-subject
comparison and integration of functional and anatomi-
cal data. Images of the same subject may be warped
into correspondence over time, to help analyze shape
changes during development or degenerative diseases. Al-
most all the active research groups in this area have de-
veloped and/or have their favorite brain warping tech-

nique.1 A few representative works can be found at
[5, 7, 8, 13, 14, 16, 30, 34, 36, 37, 40, 41], this list be-
ing far from complete. In spite of this, the problem is
still open and widely studied, since there is not a “ground
truth” method to obtain a map between brains. The cri-
teria for matching different features (e.g., geometry or in-
tensity) may also depend on the applications, which range
from recovering intraoperative brain change to mapping
brain growth, or reducing cross-subject anatomical differ-
ences in group functional MRI studies.

The way the brain warping problem is addressed is
critical for studies of brain diseases that are based on
population comparisons. Examples of this application
can be found at [14, 34], although these are a very non-
exhaustive account of the rich literature on the subject.
The interested reader may also check [35] for numer-
ous applications of brain warping and population stud-
ies. As detailed in [37], brain warping approaches can
be divided into two classes, those based on volume-to-
volume matching and those based on surface-to-surface
matching. Our work belongs to the latter of the cate-
gories. Surface matching has recently received increas-
ing attention as most functional brain imaging studies fo-
cus on the cortex, which varies widely in geometry across
subjects. The power of these studies depends on the de-
gree to which the functional anatomy of the cortex can be
aligned across subjects, so improved cortical surface reg-
istration has become a major goal. In contrast with flow
based works such as those in [5, 30, 34], our motivation
is as in [1, 16, 17, 18, 21, 38, 39, 42]. That is, we aim to
compute a map that preserves certain pre-defined geomet-
ric characteristics of the surfaces. While the literature has

1This includes groups at JHU, UCLA, U. Penn., INRIA, MGH, GAT-
ECH, Harvard-BW, and the University of Florida, to name justa few.



mainly attempted to preserve angles and areas, we work
with geodesic distances (see also [33]). Our work is in-
spired by the literature on Lipschitz minimizing maps and
in its connection to the infinite Laplacian. The motivation
for using these frameworks will be presented after some
brief mathematical introduction below.

In this paper we therefore introduce the use of Lip-
schitz minimizing maps into the area of computational
brain imaging, presenting a theoretical and computational
framework complemented by examples with artificial and
real data. An additional critical contribution of the work
here presented is that intermediate distorting maps to the
plane or sphere are avoided – these intermediate mappings
are common practice in the brain warping literature.

2 Formal statement of the problem

LetB1 andB2 be two cortical surfaces (2D surfaces in the
three dimensional Euclidean space) which we consider
smooth and endowed with the metric inherited fromIR3
so thatdB1 anddB2 are the geodesic distances measured
onB1 andB2, respectively. Let�1 � B1 and�2 � B2 be
subsets which represent features for which a correspon-
dence is already known. In general, the sets�i are the
union of smooth curves traced on the surfaces, e.g., sulcal
beds lying between gyri, and/or a union of isolated points.
A set of anatomical landmarks that occur consistently in
all subjects can be reliably identified using standardized
anatomical protocols or automated sulcal labeling tech-
niques (see for example Brain VISA by Mangin and Riv-
iere and SEAL by Le Goualher).

Functional anatomy also varies with respect to sulcal
landmarks, but sulci typically lie at the interfaces of func-
tionally different cortical regions so aligning them im-
proves the registration of functionally homologous areas.
As commonly done in brain warping [37], we assume that
a correspondence between�1 and�2 is pre-specified to
the map (boundary conditions of the map). In this cor-
respondence, internal point correspondences may be al-
lowed to relax along landmark curves in the final map-
pings, e.g., [26].

To fix ideas let’s assume that�1 = [Nk=1xi and�2 =[Nk=1yi, and that the correspondence is given byxi 7! yi
for 1 � i � N .

We want to find a (at least continuous) map� : B1 !

B2 such that�(xi) = yi for 1 � i � N and such that�
produces minimal distortion according to some functionalJ. One possible way of interpreting this problem is that
we are trying to extrapolate or extend the correspondence
from�1 to the whole ofB1 in such a way that we achieve
small distortion.

A possible way to measure the distortion produced by
a map� is by computing the functionals (1 � p <1)Jp(�) = � 1�(B1) ZB1 kDB1�kp2 �(dx)�1=p

(1)

whereDB1 denotes differentiation intrinsic to the surfaceB1 and� is the area measure onB1. One immediate idea
is then to consider, for a fixedp 2 (1;1), the following
variational problem:

Problem 1 (minimize Jp) Find � 2 S such thatJp(�) = inf 2S Jp( ); whereS is a certain smoothness
class of maps� fromB1 to B2 such that they respect the
given boundary conditions�(xi) = yi for all xi 2 �1.

The casep = 2 corresponds to the Dirichlet functional
and has connections with the theory of (standard) Har-
monic Maps. In more generality, it is customary to call
the solutions to Problem1 p-Harmonic Maps, see for ex-
ample [10, 20, 11]. It is easy to show, under mild regular-
ity assumptions, that for a fixed�, Jp(�) is nondecreasing
as a function ofp, and that [15]J1(�) := limp"1 Jp(�) = essupx2B1kDB1�(x)k2; (2)

which is the Lipschitz constant of�.
In this paper we propose to use the functionalJ1 as a

measure of distortion for maps between cortical surfaces
and to solve the associated variational problem in order
to find a candidate mapping between the cortical surfaces
(constrained by the provided boundary conditions).

LetL denote the space of all Lipschitz continuous maps : B1 ! B2 such that (xi) = yi for 1 � i � N . We
then propose to solve the following problem:

Problem 2 (minimize J1) Find � 2 L such thatJ1(�) = inf 2L J1( ).
We now argue in favor of this functional.
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2.1 Why use J1 ?

Our first argument is thatJ1 measures distortion in a
more global way than any of theJp for p 2 (1;1),
since instead of computing an averaged integral quantity,
we are looking at the supremum of the local distortions,kDB1�(x)k2. Note also that as stated above,J1 upper-
boundsJp under mild regularity assumptions.

Another element to consider is that this problem is well
posed for the kind of general boundary data we want to
respect, provided both at curves and isolated points on the
surfaces. At least for the casep � 2, this is not true in
general, see [3].

We are then looking for a Lipschitz extension of the
map given at�1 whose Lipschitz constant is as small as
possible. LetL(�1;�2) := maxxi;xj2�1 dB2(yi; yj)dB1(xi; xj) ;
that is, the Lipschitz constant of the boundary data. In
general, we will haveinf 2L J1 > L(�1;�2). This
is related to Kirszbraun’s Theorem, which in one of its
many guises states that a Lipschitz mapf : S ! IRD ,S � IRd, has an extension�f : IRd ! IRD with the
same Lipschitz constant asf , see [12]. In the same vein,
one has Whitney and McShane extensions which apply
to the case when the domain is any metric spaceX and
the target isIR. These extensions provide functions that
agree withf where boundary conditions are given and
preserve the Lipschitz constant throughoutX , see for ex-
ample [2, 22]. The more general problem of extendingf : S ! Y (S � X , X andY any metric spaces) to allX with the same Lipschitz constant is not so well under-
stood and only partial results are known, see for example
[23, 24, 25].

The idea then is to keep the distortion at the same order
as that of the provided boundary conditions. In general
there might be many solutions for the Problem (2). One
particular class of minimizers which has recently received
a lot of attention is that ofabsoluteminimizers, orabso-
lutely minimizing Lipschitz extensions(AMLE). Roughly
speaking, the idea here is to single out those solutions
of Problem (2) that also possess minimal local Lipschitz
constant, again, see [2] for a general exposition, and [22]
for a treatment of the case when the domain is any reason-
able metric space and the target is the real line.

3 Proposed computational ap-
proach

If we take for example the case ofp-Harmonic maps, one
way of dealing with the computation of the optimal map�p is by implementing the geometricp-heat flow associ-
ated with the Euler-Lagrange equation of the functionalJp, starting from a certain initial condition. As was ex-
plained in [29], using an implicit representation for bothB1 andB2, we could obtain the partial differential equa-
tionPDEp we need to solve in order to find�p. By tak-
ing the formal limit asp " 1 we would findPDE1,
the PDE that characterizes the solution�1 of the (varia-
tional) Problem (2).2 All of this might work if we had a
notion of solution for the resulting PDEs. Whereas this
is feasible in the case ofPDEp for 1 < p < 1, to the
best of our knowledge, there is no such notion of a so-
lution for PDE1. One could of course still persist and
try to solve these equations without the necessary theo-
retical foundations and call these plausible solutions1-
Harmonic Maps. Nonetheless, this is certainly an inter-
esting line of research.

A different direction is considered in this work. As a
guiding example, we first concentrate on the case whereB1 is any closed smooth manifold andB2 is replaced byIR, as considered in [4] (for scalar data interpolation on
surfaces), and in [32]. In [4], the authors propose to
follow a similar path to the one we have just described,
and they do not obtain a convergent numerical discretiza-
tion for the resulting PDE. Meanwhile, in [32], the author
proposes a convergent discretization of the PDE, basing
his construction on the original variational problem. We
choose to follow this idea as our guiding principle.

We now explain this alternative approach. The ba-
sic idea is simple, instead of first obtaining the Euler-
Lagrange equations forJ1 and then discretizing them,
we will first discretizeJ1 and then proceed to solve
the resulting discrete problem. Consider that the do-
mainB1 is given discretely as a set of (different) pointsB 1 = fx1; : : : ; xmg together with a neighborhood rela-
tion (i.e., a graph). To fix ideas let’s assume the neighbor-
hood relation is ak-nearest neighbors one. Denote, for
each1 � i � m, byNi = fxj1 ; : : : ; xjkg 2 B 1 the set

2The case when the domain is a subset ofIRd and the target is the
real line leads to the so called infinity Laplacian, see [2, 19, 9].
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of k neighbors of the pointxi. We consider the discrete
local Lipschitz constant of the map� atxi:Li(�) := maxxj2Ni dB2(�(xi); �(xj))dB1(xi; xj) (3)

Upon noting thatLi(�) serves as a discrete approxima-
tion tokDB1�(xi)k2, we see that a possible discretization
of the functionalJ1(�) is given by the discrete global
Lipschitz constant of� given bymax1�i�m Li(�). The
author of [32] proposed, in the case whenB2 is replaced
by IR, solving the discrete version of Problem (2) by fol-
lowing the following iterative procedure (here described
for B2 a surface as in our problem):� Let �0 be an initial guess of the map.� For eachn � 1, if xi =2 �1, let�n(xi) = argminy2B2 maxj2Ni dB2(y; �n�1(xj))dB1(xi; xj) (4)� �n(xi) = yi for all n � 0 for xi 2 �1.

With computational efficiency related modifications
described below, this is the approach we follow in gen-
eral. The intuition behind this iterative procedure is that,
at each point of the domain, we are changing the value of
the map in order to minimize the local Lipschitz constant,
that is, the local distortion produced by the map. This is in
agreement with the notion of AMLEs briefly explained inx2.1. We should remark that since we are using intrinsic
distances for the matching, we can letLi(�) play the role
of (the norm of) the displacement field for analyzing the
deformation,3 seex5 ahead.

4 Implementation details

In addition to discretizing the domainB 1 , we also use a
discretizationB 2 = fy1; : : : ; ym0g of the target spaceB2
for our implementation. We endowB 2 with a neighbor-
hood relation given by thek-nearest neighbors of each

3One can imagine a situation in which two isometric surfaces are
matched by our algorithm such thatLi(�) = 1 for all i, but the dis-
placement fieldkxi � �(xi)k is large since there may be no rigid mo-
tion that aligns the two surfaces. One simple example is a flatsheet of
paper and the same sheet slightly bent.

point. For computational efficiency, we work at all times
with two different scales in the discrete domainB 1 . We
choose a subsetF1 of B 1 such that#F1 � m but stillF1 is an efficient (well separated) covering ofB 1 with
small covering radius. We do this by using the well known
(geodesic) Farthest Point Sampling (FPS) procedure, see
[28, 31], which can be efficiently constructed based on
optimal computational techniques. Roughly speaking, we
apply the iterative procedure on this subset of points only
and then extend the map to the rest of the points in the do-
mainB 1 . We now show how to obtain a reasonable initial
condition�0 and then discuss additional details regarding
the implementation of the iterative procedure described in
the previous section.

Building the initial condition: We compute, for allxr 2F1n�1, �0(xr) = argminy2B2 maxxi2�1 dB2 (y;yi)dB1 (xr ;xi) : For
this step we use the classical Dijkstra’s algorithm for ap-
proximating the distancesdB1 anddB2 since they might
be evaluated at faraway points. This is of course run on
the graphs obtained from connecting each point to itsk-
nearest neighbors.

The iterative procedure: After �0 is computed for all
points in the setF1, we run the iterative procedure fromx2 on this set of points. The main modification here is that
whereas we still use Dijkstra’s algorithm for approximat-
ing dB2 in the target surface, since in the domain we must
computedB1 only for neighboring points (F1 was chosen
to be dense enough), for computationally efficiency we
can approximatedB1(xi; xj) ' kxi � xjk for xj 2 Ni.
We should also point out that for points inF1, the neigh-
borhood relation is defined to be that ofk-nearest neigh-
bors with respect to the metric onB 1 defined by the adja-
cency matrix ofB 1 . Let �� : F1 ! B 2 denote the map
obtained as the output of this stage.

Extension to the whole domain: After we have iterated
over points inF1 until convergence, we extend the map�� to all pointsxi in B 1nfF1[�1g. This is done by com-

puting��(xi) = argminy2B2 maxx2F1[�1 dB2 (y;��(x))dB1 (xi;x) .
For this step, and since we have already obtained the map
for a relatively dense subset, we approximate bothdB1
anddB2 by the Euclidean distance. Once again, the moti-
vation for this is just computational efficiency.

4



5 Examples

In this section we present some computational examples
of the ideas presented in previous sections. First, in Fig-
ure1 the domainB1 is acube(m = 10086) and the targetB2 is asphere(m0 = 17982). For the purposes of visual-
izing the map, we assigned the clown texture (which can
be thought of as a functionI : B 2 ! IR) to the sphere,
which can be seen on the bottom-right corner of the fig-
ure. The sphere and the cube were concentric and of ap-
proximately the same size. We selectedF1 on the cube
consisting of1000 well separated points using the FPS
procedure alluded to inx4. Also, we setk = 6 (num-
ber of neighbors). We then chose�1 to be the first100
points of the set and then projected them onto the sphere,
obtaining in this way, the corresponding set�2 to use as
boundary conditions. We then followed the computational
procedure detailed before. The top-left figure shows the
compositionI Æ �� : cube! IR as a texture on the cube.
Finally, the top-right and the bottom-left images show the
histogram ofLi(��) and its spatial distribution in the do-
main (we paint the cube at each pointxi with the color
corresponding toLi(��)), respectively. Ideally, we would
like to obtain aÆ-type histogram, meaning that the dis-
tances have been constantly scaled. Of course, this is not
possible (unless one of the surfaces is isometric to a scaled
version of the other), and we attempt to obtain histograms
as concentrated as possible. This is quite nicely obtained
for this and the additional examples in this paper.

Figure 2 shows the construction of a map from the
unit sphereS2 into a cortical hemisphereB (B). The
boundary conditions consisted of6 pairs of points. We
first took the following6 points on the sphere�1 =f(�1; 0; 0); (0;�1; 0); (0; 0;�1)g. We then constructed
the intrinsic distance matrix[dS2(pi; pj)℄ for all pi; pj 2�1. Finally, we chose6 pointsfq1; : : : ; q6g = �2 in B
such thatmaxi6=j dB(qi;qj)dS2 (pi;pj) was as close as possible to1�diam(B ). We paintedB with a textureIH depending
on its mean curvature so as to more easily visualize the
sulci/crests: IfH(x) stands for mean curvature ofB atx,
then IH (x) = (H(x)�minxH(x))2. See the caption
for more details.

The example in Figure3 is about computing a map�
from a subject’s left hemisphereB 1 to another subject’s
left hemisphereB 2 . The boundary conditions were con-

structed in a way similar to the one used for the previ-
ous example, but in this case,300 points were chosen.
Note that, if available, hand traced curves could be used
as commonly done in the literature (in other words, more
anatomical/functional oriented boundary conditions). In
the first two rows we show4 different views of each corti-
cal surface, and in the third row we showB 1 colored with
the values ofLi(�) which we interpret as a measure of
the local deformation of the map needed to matchB 1 toB 2 . See the caption for more details.

Figure 1: Artificial example of the proposed warping algo-
rithm. From top to bottom and left to right: The domain surface,
with a picture painted on it to help in visualizing the computed
map; histogram of the Lipschitz constant (note how it is con-
centrated around a single value); color coded distributionof the
Lipschitz constant for the computed map; and mapped texture
following the computed map.

6 Concluding remarks

In this paper we have introduced the notions of minimiz-
ing Lipschitz extensions into the area of surface and brain
warping. These maps provide a more global constraint
than ordinary p-harmonic ones, and allow for more gen-
eral boundary conditions. The proposed computational
framework leads to an efficient surface-to-surface warp-
ing algorithm that avoids distorting intermediate steps that
are common in the brain warping literature. We are cur-
rently investigating the use of this new warping technique
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for creating population averages and applying it to dis-
ease and growth studies. In earlier work, the Jacobian of
a deformation mapping over time has been used to map
the profile of brain tissue growth and loss in a subject
scanned serially (tensor-based morphometry [6, 34]). The
discrete local Lipschitz constants of our computed map-
pings also provide a useful index of deformation that can
be analyzed statistically across subjects. The framework
here introduced can also be applied in 3D for volumetric
warping and with weighted geodesic distances instead of
natural ones to include additional geometric characteris-
tics in the matching. As recently shown in [27], the use of
pairwise distances is of importance of other matching and
computer vision tasks. Results in these directions will be
reported elsewhere.
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Figure 3:Warping between the cortical surfaces of two brains. In the first row we show4 views ofB 1 : posterior, medial, lateral
and directly viewing the occipital cortex. The corresponding 4 views ofB 2 are shown in the second row. In the third row, we
showB 1 with textureI(xi) = Li(�) which can interpreted as a measure of local deformation needed to matchxi 2 B 1 to�(xi) 2 B 2 . Relatively little deformation (blue colors) is required to match features across subjects on the flat interhemispheric
surface (second image in the second row). This is consistentwith the lower variability of the gyral pattern in the cingulate and
medial frontal cortices. By contrast, there is significant expansion required to match the posterior occipital cortices of these two
subjects, especially in the occipital poles which are the target of many functional imaging studies of vision. The final panel in the
figure shows the corresponding histogram forLi(�), the local Lipschitz constants of the map.
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